Saturday, 16 April 2011

Weekend Update April 16, 2011


Baltic Dry Index. 1296


LIR Gold Target by 2019: $30,000. Revised due to QE.

We are currently over two years into Cycle 24. The predicted size would make this the smallest sunspot cycle in nearly 200 years.


This weekend, NASA seems to be switching to global cooling, at least for the current and next sunspot cycles, that is out to about 2030. Is our world really prepared for a 20 year period of colder existence? What about our crops?


Solar Cycle Prediction (Updated 2011/04/04)













Current prediction for the next sunspot cycle maximum gives a smoothed sunspot number maximum of about 62 in July of 2013. We are currently over two years into Cycle 24. The predicted size would make this the smallest sunspot cycle in nearly 200 years.


Predicting the behavior of a sunspot cycle is fairly reliable once the cycle is well underway (about 3 years after the minimum in sunspot number occurs [see Hathaway, Wilson, and Reichmann Solar Physics; 151, 177 (1994)]). Prior to that time the predictions are less reliable but nonetheless equally as important. Planning for satellite orbits and space missions often require knowledge of solar activity levels years in advance.


A number of techniques are used to predict the amplitude of a cycle during the time near and before sunspot minimum. Relationships have been found between the size of the next cycle maximum and the length of the previous cycle, the level of activity at sunspot minimum, and the size of the previous cycle.


Among the most reliable techniques are those that use the measurements of changes in the Earth's magnetic field at, and before, sunspot minimum. These changes in the Earth's magnetic field are known to be caused by solar storms but the precise connections between them and future solar activity levels is still uncertain.


Of these "geomagnetic precursor" techniques three stand out. The earliest is from Ohl and Ohl [Solar-Terrestrial Predictions Proceedings, Vol. II. 258 (1979)] They found that the value of the geomagnetic aa index at its minimum was related to the sunspot number during the ensuing maximum. The primary disadvantage of this technique is that the minimum in the geomagnetic aa index often occurs slightly after sunspot minimum so the prediction isn't available until the sunspot cycle has started.


An alternative method is due to a process suggested by Joan Feynman. She separates the geomagnetic aa index into two components: one in phase with and proportional to the sunspot number, the other component is then the remaining signal. This remaining signal has, in the past, given good estimates of the sunspot numbers several years in advance. The maximum in this signal occurs near sunspot minimum and is proportional to the sunspot number during the following maximum. This method does allow for a prediction of the next sunspot maximum at the time of sunspot minimum.


A third method is due to Richard Thompson [Solar Physics 148, 383 (1993)]. He found a relationship between the number of days during a sunspot cycle in which the geomagnetic field was "disturbed" and the amplitude of the next sunspot maximum. His method has the advantage of giving a prediction for the size of the next sunspot maximum well before sunspot minimum.


We have suggested using the average of the predictions given by the Feynman-based method and by Thompson's method. [See Hathaway, Wilson, and Reichmann J. Geophys. Res. 104, 22,375 (1999)] However, both of these methods were impacted by the "Halloween Events" of October/November 2003 which were not reflected in the sunspot numbers. Both methods give larger than average amplitude to Cycle 24 while its delayed start and low minimum strongly suggest a much smaller cycle.


http://solarscience.msfc.nasa.gov/predict.shtml


Next, a weekend diversion thanks to reader Richard in Cape Cod, MA. Enjoy.


Nyiragongo Crater: Journey to the Center of the World


http://www.boston.com/bigpicture/2011/02/nyiragongo_crater_journey_to_t.html


Normal service resumes Monday.


GI.



No comments:

Post a Comment